Top Dilepton Cross-Section Report

Mircea Coca (U of Rochester) for Dilepton Group

Changes to Event Selection

- Extend jets to |η| < 2.5
 - Winter analysis used $|\eta| < 2.0$
- Cutting on corrected instead of raw quantities
 - Use Jet Corrections 1,2,3,5
 - Count jets with corrected $E_T > 15$ GeV
 - Winter analysis used raw E_T > 10 GeV
 - Use these jets to correct MET and calculate H_T
- As was done in Run I, loose central leptons not required to be isolated
 - Does not apply to CMIOs
- Trilepton category added
- CMX muons no longer vetoed if have CMU/BMU stubs

New Z Veto

- Not so new:
 - CDF 3387 (H. Frisch)
- Exploit the fact that MET from top is real while MET in Z+jets results from jet under-measurement
 - Expect that higher jet ET → higher jet fluctuation → larger MET.
- Events with MET > 60 GeV ->jet lost in a crack ($\eta = 0$ or 1.1)-> use $\Delta \phi$ (MET, jet) to reject those events

$$jetsig = \frac{MET}{\sqrt{\sum_{|\Delta \mathbf{f}(met, jet) < 90|} (\vec{E}_T jet \cdot \frac{\vec{MET}}{MET})}}$$
 MET/ σ_{MET}

How to optimize this cut?

f.o.m = uncertainty on the xsec

 $\begin{array}{l} \text{jetsig} > 8.0 \\ \Delta \phi (\text{MET,jet}) > 10 \end{array}$

Central Electron ID

- Central electrons selected according to ETF baseline cuts for E_T < 100
 - Essentially unchanged from winter
 - E_T > 20 GeV
 - HadEm < 0.055 + 0.00045*E
 - Lshr < 0.2
 - Iso4 < 0.1
 - $P_T > 10 \text{ GeV}$
 - E/P < 2, if E_T <=100 GeV
 - P_T > 50 GeV, if E_T > 100 GeV
 - -3.0 cm $< \Delta x^*Q_trk < 1.5$ cm
 - $|\Delta z| < 3$ cm
 - CES χ^2 Strips < 10
 - Track $|Z_0|$ < 60 cm
 - Fiducial = 1 (Ces |X|<21 cm, 9< Ces |Z|<230 cm)
 - All good central electrons are TIGHT

 ≡ CEM

Plug Electron ID

- Plug electrons selected according to ETF baseline cuts, E_T < 100 GeV except as noted below in RED
 - LOOSE ≡ PEM
 - E_T > 20 GeV
 - Had/Em < 0.05
 - lso4 < 0.1
 - PEM3x3FitTower !=0
 - PEM3x3FitChi2 < 10
 - PES 5by9 u and v > 0.65
 - Fiducial based on PES 1.2 < |η| < 2.5
 - TIGHT ≡ PHX
 - In addition to the above, must also have phoenix track
 - # Si Hits ≥ 3
 - Track |Z0| < 60cm
 - DeltaR Track/PES < 3cm
 - » Redudant since phoenix algorithm seeds track with PES
 - Note: PEM and PHX categories are exclusive
 - Note: PHX e's must be in the plug fiducial region

Muon ID

- Muons are selected as in the winter with the addition of non-fiducial CMIOs passing the additional cut in RED
 - Pt > 20 GeV
 - HadEnergy < max(6.,6.+0.0280*(P-100))) GeV
 - EmEnergy < max(2.,2.+0.0115*(P-100))) GeV
 - |Z0| < 60
 - If CMUP |CmuDx|< 3 and |CmpDx| < 5</p>
 - If CMU |CmuDx|< 3
 - If CMP |CmpDx|< 5
 - If CMX |CmxDx| < 6
 - If CMIO, HadEnergy + EmEnergy >0.1 GeV
 - CMIO must be nonfiducial to muon chambers (MuonFiducialTool)

 - TrkStSeg > 3
 - If TrkSiHits > 0, |D0| < 0.02
 - Otherwise |D0|< 0.2

Event Selection

- Require two leptons passing ID cuts
 - At least one of which is TIGHT
- Require both leptons to be isolated
 - Relaxed for 2nd central lepton (except CMIO)
- If leptons are same-species with 76 < M_{||}< 106 GeV
 - Require "Jet Significance" > 8.0
 - $-\Delta\phi(MET, closest j) > 10^{\circ}$
- Corrected MET > 25 GeV
- $\Delta \phi$ (closest I or j,MET) > 20° if MET < 50 GeV ("L" cut)
- Two jets with $|\eta|$ < 2.5 with corrected E_T > 15 GeV
 - Using jet corrections levels 1,2,3,5
- Require corrected H_T > 200 GeV
- Require leptons to be opposite signed
 - Does not apply to PEM which do not have tracks

Dilepton Categories

- Events are required to have two leptons
 - At least one of which is TIGHT ISOLATED lepton
- Trigger lepton is required to be TIGHT
- Permuting TIGHT with LOOSE
 - 26 dilepton categories

ee: 5 categories

– eμ: 9 categories

– μμ: 12 categories

1 trilepton category

<u>TIGHT</u>	LOOSE
CEM	PEM
CMUP	CMU
CMX	CMP
PHX	CMIO

$\sigma(W)$ & $\sigma(Z)$ as cross-checks for PHX electrons

PHX Efficiency SF w/ 4.11.1 = 0.986

Used plug data: Z->ee(CP) ?

PHX W Cross-Section

- Look at bpel08
 - Si goodruns only
- Require one PHX electron passing dilepton analysis cuts
- Require MET > 25 GeV
- # W candidates
 - 20,215 events

 $s \times B(W \otimes en) = 2.4 \text{ nb}$

PHX Z Cross-Section

- Look at bpel08
 - Si goodruns only
- Require two PHX electrons passing dilepton analysis cuts
- # Z candidates
 - 578 events

s x B(Z®ee) = 259 pb

Di-Electron Mass

ttbar Acceptance (from ttopli MC)

	Dilepton Cut							N.	Jels						
Category	Gco	m-Pt	II)	ÌЯО	conv _, cosm	Z veto	Į.	T	$rac{\Delta\phi}{({\rlap/I}_T^{\!$	0j	lj	2j	$H_T > 200$	OS
TCE-TCE	16	964	95	6	932	882	823	7	47	677	3	95	579	560	543
TÇE-PHX	41	117	54	7	519	505	474	4	19	383	2	53	328	311	290
TÇE-PEM	31	160	15	7	127	122	113	9	19	92	0	14	78	76	76
PHX-PHX	3	56	73	3	65	64	63	Į.	55	49	0	7	42	39	30
PHX-PEM	4	12	33	3	25	24	24		18	15	0	1	14	14	14
cc	25	009	176	56	668	1597	1497	13	338	1216	5	170	1041	1000	953
							,								
CMUP-CMU	_	591		352	34	5 345	3	. 5	280	252		l 20	231	224	213
CMUP-CM		228		135	12		11	LQ.	102		_	l 8	80	77	74
CMUP-CM	_	334		221	19		14	35	165	153				125	120
CMUP-CM		475	\perp	310	30		24	33	252			<u> </u>		196	190
CMUP-CMI		1991		265	19		14	36	157			_		116	116
CMX-CMD		116	\perp	75	75		6		56	48		_	42	41	40
CMX-CMU	_	83		60	51		_	5	37	33			30	28	25
CMX-CMI		119	\perp	86	77			3	67	59			55	52	49
CMX-CMI) C	863		114	83			8	77	68		_	57	57	57
μμ		4800		1618	145	1451	13	43	1193	1067	3	3 113	951	916	884

ttbar Acceptance II

		Dilepton Cut								N	Jels			
Calegory	,	Geom-F	` []	D	iso	conv+cosm	Z veto	I_T	$\Delta \phi = (E_T, \ell/j)$	Oj.	lj	2j	$H_T > 200$	OS
TCE-CMU	TP	6687	1:	237	121	1185	1185	1041	934	3	101	830	801	774
TCE-CM	Ū	1308	2	41	215	213	213	191	171	2	22	147	139	135
TCE-CM	P	1774	3	53	315	308	308	266	241	2	28	211	206	198
TCE-CM	X	2743	5	22	518	504	504	441	396	3	49	344	328	321
TCE-CM	0	15399	4	23	322	317	317	279	252	0	38	214	205	205
PHX-CMU	IP	809	3	23	308	304	304	260	243	1	28	214	203	179
PHX-CM	Ū	139	-	41	40	40	40	34	32	0	2	30	29	27
PHX-CM	P	251		95	91	90	80	81	74	0	7	67	66	61
PHX-CM2	X.	357	1	24	116	115	115	104	98	0	11	87	\$1	76
PHX-CMI	0	1914	'	91	70	67	67	60	53	0	11	42	39	36
PEM-CMU	т	579	Τ,	93	73	72	72	57	55	2	5	48	44	44
PEM-CM	X	264		37	31	31	31	27	21	0	2	19	17	17
eμ		32224	3	580	3310	3246	3316	2841	2570	13	304	2253	2158	2073
]]]		17333	57	ı	51	47	0	44	42	0	14	28	28	0
		3281	2		1	1	Q	1	1	Q	0	l	1	0
100		0	Q		Q	0	0	0	0	0	Q	0	0	0
Total 382000	•	62033	6964	6	435	6294	6156	5372	4853	21	587	4245	4074	3910

Sample composition

	Dilepton category (after Geom/Pt Cuts)					
ttbar dilepton source	ee	$\mu\mu$	e $m{\mu}$			
WW→						
ee	83.53 ± 1.20	0 ± 0	0.10 ± 0.07			
$\mu\mu$	0 ± 0	83.14 ± 1.26	0 ± 0			
au au	0.42 ± 0.21	0.23 ± 0.16	0.48 ± 0.15			
$\mathrm{e} au$	11.23 ± 1.02	0.11 ± 0.11	6.03 ± 0.52			
$\mathrm{e}\mu$	0 ± 0	0 ±0	83.26 ± 0.82			
$\mu \tau$	0 ±0	13.35 ± 1.14	6.37 ± 0.54			
ejj	4.8 ± 0.69	0 ± 0	1.88 ± 0.30			
μ jj	0 ±0	2.6 ± 0.54	1.74 ± 0.29			
aujj	0 ±0	0.57 ± 0.25	0.14 ± 0.08			
ijiji	0 ±0	0 ± 0	0 ± 0			

Table 1: Relative acceptancies to the ttbar dilepton signal.

Acceptance Summary

Total Acceptance: Herwig: 3910/382000 = 1.02 %

Pythia: 3813/398037 = 0.96 %

- Acceptance :
 - By region:
 - CC = 78 %
 - CP = 20 %
 - PP = 2 %
 - By lepton:
 - ee = 23%
 - $e\mu = 53\%$
 - μμ = 24%
 - By change (approximately):

Increase from winter = 200%

- Adding plug + corrected cuts: 0.52% → 0.73%
- Drop 2nd leg isolation, new cuts: $0.73\% \rightarrow 0.89\%$
- Remove Z mass cut: 0.89% → 0.93%
- Add CMIOs: 0.93 → 1.02%

Herwig:

- does not have FSR photon radiation coming off of leptons
- uses the theoretical $BR(W \rightarrow 1)$

Go for Pythia?

DY(ee, μμ) Background Estimate

- Outside the mass window (76, 106) GeV, we use the technique from Winter (CDF 6322)-> extrapolate #Z's inside window N_Z^{2j} to outside region + MC AlpGen to get effs for H_T
- Inside the mass window:
 - from data -> N_Z^{2j} inside Z window
 - from DY+2p AlpGen+Herwig get $\epsilon_{\text{ZVeto}\cdot\text{MET}\,\Delta\phi.\,\,\text{HT}\,\text{OS}}$
 - In $\sim 120 \text{ pb}^{-1}$:

Channel	Outside Z Win	Inside Z Win					
ee	0.16 ± 0.10	0.56 ± 0.07					
$\mu\mu$	0.10 ± 0.09	0.35 ± 0.05					
Sub-Total	0.26 ± 0.14	0.91 ± 0.09					
TOTAL	1.17 ± 0.17						

WW/WZ Background Estimate

- WW- Follow the Winter experience (CDF 6290)
 - →use Pythia wtop0f (562 fb⁻¹):
 - in 100 pb⁻¹: 0.306+-0.112 events
- Keep on eye on the studies performed in WW Group to get a better 2 jet fraction efficiency
- WZ: use wtop0q (an order of magnitude smaller than WZ):
 - In 100 pb⁻¹ we expect: 0.054+- 0.022 events ? cross-section was wrong!!

$Z \rightarrow \tau \tau$

- In Winter (CDF 6320) we showed that Pythia, Herwig (sick!) and Madgraph estimates agree at the 20 % level->systematic uncertainty
- Use Pythia ztop2t + correct the 2-jet fraction using the data (Winter factor):

-In 100 pb⁻¹: 0.266+- 0.114 events

Fake Background Estimate

 Method I: Using the Winter technique (CDF 6260), with small tunings

 Preliminary numbers will be available for tomorrow

Method II

- Fakes from W+3 jets where one of the jets fakes a lepton, so can get fakes by:
 - Measuring lepton fake rate per "jet" from JET20. JET50, JET70
 - "Jet" definition includes tracks not clustered in a jet to account for MIPs faking muons
 - Applying to W + 3 "jet" events in inclusive lepton sample
- Note: the numerator is a subset of the denominator

Jet probability = Num/Den							
	Electrons	Muons					
Numerator	TCE,PEM or PHX	CMUP,CMP, CMU, CMX, CMIO					
Denominator	Corrected Jets η > 2.5, E_T > 15 GeV	Corrected Jets η> 2.5, E _T > 15 GeV + Tracks P _T > 10 GeV					

Method II

- Use inclusive leptons datasets to count
 #W(e_i)>+ 3 jets (1 lepton + 3 jets+ MET+ L cut),
 where i = CEM, PHX or PEM
 #W(μ_j)>+ 3 jets or tracks (1 lepton + 3 jets or
 tracks+ MET+ L cut),
 where j = CMUP, CMU, CMP, CMX, CMIO
- Apply the fake probability * 2 j eff * H_T eff

Method II: Results

 Fake probability (averaged over jet20, 50, 70 samples)

CEM: 5.7 e-7 NICEM: 7.8 e-5

PEM: 3.6 e-4 PHX: 6.2 e-5

CMUP: 3.9 e-7 CMU: 1.2 e-7

CMP: 2.6 e-7 CMX: 1.3 e-7

NICMUP: 1.6 e-5 NICMU: 9.8 e-6

NICMP: 1.6 e-5 NICMX: 8.8 e-6

CMIO: 1.3 e-7

#W+3 jets evts from central dataset: 451

#W+3 jets or MI tracks from central dataset: 1216

#W+3 jets evts from plug dataset: 176

#W+3 jets or MI tracks from

plug dataset: 337

Total fakes expected: 0.56 evts (after all cuts).

Cross-checks: W+heavy flavor

- Use the numerous W+HF AlpGen+Herwig samples to estimate this background per 100 pb⁻¹. W+HF contribution to dilepton is part of the fake estimate; this is just a check
- In 100 pb $^{-1}$: < 0.05 events

atop16 W(μν)bb0p	0.0022 evts	atop13 W(ev)cc0p	0.0064 evts
atop10 W(ev)bb0p(OLD)	0.0066 evts	atop19 W(μν)cc0p	0.0038 evts
atop40 W(ev)bb0p(NEW)	0.0035 evts	atop0w W(ev)c0p	0.007 evts
atop41 W(ev)bb1p	0.0046 evts	atop3w W(μν)c0p	< 0.012 evts (0 evts pass all cuts)
atop1w W(ev)c1p	0.0043 evts	atop4w W(μν)c1p	0.026 evts

Dilepton Good Run List

Lumi with minimal requirements: ~125 /pb

Require good CMX: ~109 /pb

Require good Si, no CMX req.: ~108 /pb

Require good Si and CMX: ~96 /pb

The question is, do we use all four, or just the last two?

- I don't want to throw away 20 pb⁻¹.
- I'm leaning toward the "maximize lumi" point of view. Andy is pretty advanced in writing a script to combine all the numbers.

Background Summary:

 Use 125 pb⁻¹ (the different luminosities for different categories folding will be ready for the preblessing)

First look at the data

 Search for candidates in the inclusive ele, muon, plug dataset ->almost all the data was skimmed

```
    12 candidates:

            ee: 2 events
            eμ: 6 events
            μμ: 4 events

    1 CEM-CEM

            1 CEM-CMX
            1 CEM-CMIO
            1 CME-CMU

    2 CMUP-CMP

            1 CMUP-CMX
            1 CMX-CMX
```

Any more candidates ?

For the dilepton fans

```
CEM-CME: run/ev: ,153374/2276742,
                                    #jets: 3
CEM-PEM: run/ev:, 154208/966753,
                                     #jets: 3
CEM-CMUP:run/ev: , 151978/507773,
                                     #jets: 2
CEM-CMP: run/ev:, 143257/760520,
                                     #jets: 4
CEM-CMX: run/ev:, 155114/478702,
                                     #jets: 3
CEM-CMX: run/ev:, 156484/3099305,
                                     #jets: 3
CEM-CMU: run/ev:, 162178/4932257,
                                     #jets: 2
CEM-CMIO: run/ev:, 161633/963604,
                                     #jets: 3
CMUP-CMP: run/ev: , 153447/2643751,
                                     #jets: 3
CMUP-CMP: run/ev: , 162820/7050764,
                                     #jets: 2
CMUP-CMX: run/ev: , 154654/7344016,
                                     #jets: 2
CMX-CMX: run/ev:, 153325/599511,
                                     #jets: 3
```

The b-tagging information

- 6 tagged candidates (not checks if the run is in the Silicon Good Run List yet), one is double tagged (CMUP-CMX)
- CEM-CEM:
- CEM-PEM:
- CEM-CMUP:
- CEM-CMX:
- CMUP-CMP:
- CMUP-CMX:

Double-tagged event

Summary and Plans

- Acceptance has been doubled relative to the winter conference results, while S/B ~ 7
- Finish the list of candidates (plug data not skimmed yet->became available Monday)
- Cross-checks the fake background between different methods
- Documentation close to be posted
- Estimate the systematic uncertanties
- Plan to pre-bless next week